A full-sunlight-driven photocatalyst with super long-persistent energy storage ability
نویسندگان
چکیده
A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.
منابع مشابه
Photocatalytic magnetic separable beads for chromium (VI) reduction.
Magnetically separable photocatalyst beads containing nano-sized iron oxide in alginate polymer were prepared. This magnetic photocatalyst beads are used in slurry-type reactors. The magnetism of the catalyst arises from the nanostructured particles gamma-Fe(2)O(3), by which the catalyst can be easily recovered by the application of an external magnetic field. These synthesized beads are sunlig...
متن کاملPhotoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight
Photoreduction of CO2 with water into valuable organic compounds under concentrated sunlight as well as Xeor Hg-lamp irradiation was investigated using a Pt-loaded potassium hexatitanate (K2Ti6O13) photocatalyst or a composite catalyst in which the Pt-K2Ti6O13 photocatalyst was combined with a CO2 hydrogenation catalyst of Cu/ZnO. When the Pt-K2Ti6O13 photocatalyst was used under Xeor Hg-lamp i...
متن کاملPorous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production.
Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was use...
متن کاملPersistent deNOx Ability of CaAl2O4:(Eu, Nd)/TiO2-xNy Luminescent Photocatalyst
CaAl2O4:(Eu, Nd)/TiO2-xNy composite luminescent photocatalyst was successfully synthesized by a simple planetary ball milling process. Improvement of photocatalytic deNOx ability of TiO2-xNy, together with the persistent photocatalytic activity for the decomposition of NO after turning off the light were realized, by coupling TiO2-xNy with long afterglow phosphor, CaAl2O4:(Eu, Nd). The novel pe...
متن کاملOptimal design of onboard energy storage systems with volume limitation for urban electrical rail transportation
Train braking energy regeneration in urban electrical rail transportation systems can reduce energy consumption and operational cost of the system. In this paper, optimal design of an onboard energy storage system (OESS) with volume constraint is presented for urban electrical rail transportation systems (ERTS). Onboard super-capacitors are considered as the storage system. The objective functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013